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Longitudinal changes in hippocampal texture
from healthy aging to Alzheimer’s disease

®Alfie Wearn,I ®Lars Lau Raket,z'3 D. Louis CoIIins,"4 @®R. Nathan Spreng""’s" for the
Alzheimer’s Disease Neuroimaging Initiative*

* Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or
provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be
found at: http:/adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

Early detection of Alzheimer’s disease is essential to develop preventive treatment strategies. Detectible change in brain volume
emerges relatively late in the pathogenic progression of disease, but microstructural changes caused by early neuropathology may
cause subtle changes in the MR signal, quantifiable using texture analysis. Texture analysis quantifies spatial patterns in an image,
such as smoothness, randomness and heterogeneity. We investigated whether the MRI texture of the hippocampus, an early site of
Alzheimer’s disease pathology, is sensitive to changes in brain microstructure before the onset of cognitive impairment. We also ex-
plored the longitudinal trajectories of hippocampal texture across the Alzheimer’s continuum in relation to hippocampal volume and
other biomarkers. Finally, we assessed the ability of texture to predict future cognitive decline, over and above hippocampal volume.
Data were acquired from the Alzheimer’s Disease Neuroimaging Initiative. Texture was calculated for bilateral hippocampi on 3T T;-
weighted MRI scans. Two hundred and ninety-three texture features were reduced to five principal components that described 88 % of
total variance within cognitively unimpaired participants. We assessed cross-sectional differences in these texture components and
hippocampal volume between four diagnostic groups: cognitively unimpaired amyloid-B~ (7 = 406); cognitively unimpaired amyl-
oid-B* (n =213); mild cognitive impairment amyloid-B* (7 = 347); and Alzheimer’s disease dementia amyloid-B* (r =202). To assess
longitudinal texture change across the Alzheimer’s continuum, we used a multivariate mixed-effects spline model to calculate a ‘dis-
ease time’ for all timepoints based on amyloid PET and cognitive scores. This was used as a scale on which to compare the trajectories
of biomarkers, including volume and texture of the hippocampus. The trajectories were modelled in a subset of the data: cognitively
unimpaired amyloid-B~ (z = 345); cognitively unimpaired amyloid-p* (7 = 173); mild cognitive impairment amyloid-B* (» = 301); and
Alzheimer’s disease dementia amyloid-B* (7 =161). We identified a difference in texture component 4 at the earliest stage of
Alzheimer’s disease, between cognitively unimpaired amyloid-p~ and cognitively unimpaired amyloid-B* older adults (Cohen’s
d = 0.23, P,4;=0.014). Differences in additional texture components and hippocampal volume emerged later in the disease con-
tinuum alongside the onset of cognitive impairment (d =0.30-1.22, P,4; < 0.002). Longitudinal modelling of the texture trajectories
revealed that, while most elements of texture developed over the course of the disease, noise reduced sensitivity for tracking individual
textural change over time. Critically, however, texture provided additional information than was provided by volume alone to more
accurately predict future cognitive change (d =0.32-0.63, P,4; < 0.0001). Our results support the use of texture as a measure of brain
health, sensitive to Alzheimer’s disease pathology, at a time when therapeutic intervention may be most effective.
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Texture analysis in Alzheimer’s disease

Introduction

Early detection of Alzheimer’s disease is essential to develop
effective preventive treatment strategies. Localized atrophy,
measured as regional volume loss, is commonly detected
using MRI and is used as an indicator of the pathology of
Alzheimer’s disease.! However, macroscopic volume loss is
not a direct measure of the pathological hallmarks, rather,
it is an indirect marker of the consequences of pathology.
As a result, a detectible change in volume emerges relatively
late in the pathogenic progression of disease” and is likely to
be irreversible.

Many features of the years-long preclinical phase of
Alzheimer’s disease, including accumulation of neuritic pla-
ques, formation of neurofibrillary tangles and neuroinflam-
mation, begin to appear when pathology is less developed,
and is therefore more likely to be therapeutically modifi-
able.? The earliest known iz vivo indicators of Alzheimer’s
disease pathology is a decrease in the concentration of
amyloid-beta (AB) in CSF, followed by localized increases
in AB as detected using PET.> These assays are invasive
and the latter prohibitively expensive. MRI is a safer and
relatively more accessible tool for clinical assessment that
provides valuable spatial information. There is increasing
evidence that microstructural changes caused by early neuro-
pathology may cause subtle changes in the MR signal that
can be quantified using texture analysis.*””

Texture analysis, a branch of radiomics, exploits spatial
patterns in an image, quantifying features such as smooth-
ness, randomness and heterogeneity. Texture analysis of
medical images has already provided promising results in
the area of tumour classification® (see review by Scalco
and Rizzo’). More recently, texture analysis has been inves-
tigated as a tool for classifying, predicting and differentiat-
ing Alzheimer’s disease (reviewed by Cai et al.).* Several
studies have reported differences in brain MRI texture be-
tween people with Alzheimer’s disease and healthy older
people®”-'%! and between people with mild cognitive im-
pairment (MCI) and Alzheimer’s disease,’*'? and texture
differences have been shown to predict future conversion
of people with MCI to a diagnosis of Alzheimer’s dis-
ease.”'%1? Texture differences can also be used to detect
the presence of AP pathology (measured using PET) in peo-
ple with MCL'* Scoring using Non-local Image Patch
Estimators (SNIPEs) is a method defined by patch intensity,
contrast and texture, which has also been shown to be sen-
sitive to Alzheimer’s disease pathology'’ and predict con-
version over time.'®!”

A direct analysis of texture from structural MRI has the
potential to detect subtle brain changes associated with
Alzheimer’s disease pathology before a diagnosis of demen-
tia. However, no research to date has examined whether it
can detect pathologically relevant information in those
who remain cognitively unimpaired (CU) but who have evi-
dence of A pathology, a known risk factor for Alzheimer’s
disease. A primary aim of this study was to identify whether
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the texture of a standard structural MRI scan of the hippo-
campus, an early site of amyloid pathology in Alzheimer’s
disease,'® is sensitive to such presymptomatic changes in
the brain microstructure. Furthermore, all related studies
to date have analysed only cross-sectional texture measures,
so there currently exists no description of how texture devel-
ops within individuals over the disease course. Therefore, a
second aim of this study was to explore how hippocampal
texture changes across the Alzheimer’s disease continuum
in a mixed cross-sectional/longitudinal design, particularly
in relation to hippocampal volume and other biomarkers.
Finally, we assessed to what extent measuring texture fea-
tures could increase the value of clinical MRI scans by pro-
viding additional independent information on brain health
to that provided by volumetry alone.

Materials and methods

Data used in the preparation of this article were obtained
from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (adni.loni.usc.edu). The ADNI was
launched in 2003 as a public—private partnership, led by
Principal Investigator Michael W. Weiner, MD. The primary
goal of ADNI has been to test whether serial MRI, PET,
other biological markers, and clinical and neuropsychologic-
al assessment can be combined to measure the progression of
MCI and early Alzheimer’s disease. For all ADNI partici-
pants, written informed consent was acquired before proce-
dures were performed in accordance with the Declaration of
Helsinki. All ADNI studies were approved by the appropri-
ate review boards prior to data collection.

The total sample included 863 (CU; age: 72.5 +6.56;
years of education: 16.5 +2.53; 56.2% female), 1073 MCI
(age: 72.8 + 7.59; years of education: 16.0 +2.77;41.3% fe-
male) and 410 Alzheimer’s disease dementia (ADD) partici-
pants (age: 74.8 +7.90; years of education: 15.2 +2.90;
43.4% female). Subsets of this total were used in different
analyses, which will be reported in the relevant sections,
and are summarized in Fig. 1. Two primary analysis subsets
are reported below. A full list of subject IDs included in each
cohort is available in the associated GitHub repository.

Given the sensitivity of texture features to signal-to-noise, an
a priori decision was made to calculate texture features only
in data collected on 3 T MRI. Therefore, only participants
from ADNIGO, two and three were selected for texture ana-
lysis. Furthermore, a total of 382 sessions across 214 partici-
pants were excluded due to region of interest (ROI) masks of
insufficient quality (see ‘Image processing’ section below).
This number is reasonably high as we employed strict criteria
on mask quality, particularly at the boundaries, more so than
might be necessary if studying volume alone. Texture ana-
lysis was therefore conducted on a subset of the complete
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Total ADNI cohort

Criteria: Data present in ‘ADNIMERGE’

CU : 863

MCI : 1073
ADD : 410

¥

Texture analysis subset
Criteria: 3T MRI;
Good quality MTL mask

CU:619
MCI : 629
ADD : 229

Figure 3: Tx group comparison
Criteria: Non-outlier texture data at baseline for at
least 1 component;

AB+ (or AB- for control group) at baseline

CU-AB- : 406
CU-AB*: 213
MCI-AB* : 347
ADD-AB* : 202

¥

Longitudinal Model-training subset
Criteria: At least 1 timepoint of a cognitive score or AR PET;
AB+ (or AB- for control group) at baseline

CU-AB: 441
CU-AB*: 231
MCI-AB* : 480

ADD-AB* : 264

Figure 5 & 6: Texture-modelling
Criteria: Non-outlier texture data at baseline for at least 1 component;
Estimated ‘Disease Time’

— CU-AB-: 345

CU-AB*: 173
MCI-AB* : 301
ADD-AB*: 161

Figure 7: Predicting Cognitive Change
Criteria: No Dementia at baseline;

Cognitive data available at baseline and 24-month follow-up;
Non-outlier texture data at baseline for all 5 components

CU : 328
MCI : 350

Figure | Sample size of cohort subsets used in different analyses. Inclusion criteria for participants in each subset are shown. Where
amyloid status is relevant to the analysis, the cohort is described by four diagnostic groups instead of three, where the CU group is split into
AB— (CU-AB") and AB+ (CU-AB™) subgroups. In these cases, MCl and ADD groups are also AB+. ‘Cognitive tests’ refer to the |3-item ADAS-cog,
CDR-SB and MMSE. AB PET data include '8F-Florbetapen Amyloid PET tracer and AV45 tracer data. ADAS|3, Alzheimer’s Disease Assessment
Scale (13 questions); CDR-SB, Clinical Dementia Rating scale Sum of Boxes; MMSE, Mini Mental State Examination.

data that comprised 619 CU (age: 72.2 + 6.28), 629 MCI
(age: 72.0 +7.37) and 229 ADD participants (age: 73.7 +
7.85).

Estimating the continuous measure of ‘disease time’ required
participants to have a determined amyloid status (see ‘CSF
biomarkers’ section below) and data for any of 3 cognitive
tests [13-item ADAS-cog, Clinical Dementia Rating Scale
Sum of Boxes (CDR-SB) and Mini Mental State
Examination (MMSE)] or amyloid PET, either using the
AV4S5 tracer or "8F-Florbetapen Amyloid PET tracer. One
participant was excluded for having extremely high AV45
values compared with the rest of sample. These estimated
disease times were therefore calculated for a subset of the
complete data (including ADNI1) that comprised 1416
participants: 441 CU-AB™ (age: 71.6 + 6.20), 231 CU-AB*
(age: 73.4+6.33), 480 MCI-AB* (age: 73.2+7.09) and
264 ADD-AB" (age: 74.2 +7.94).

AP was used as a grouping factor for cross-sectional analysis.
Participants were defined as ‘Ap*” based on AB_y4, thresholds
provided by ADNI. Where CSF data were available, a thresh-
old of 980 pg/mL was used,'” as measured using the Roche
Elecsys immunoassay platform. Where CSF data were not

available for a given participant, amyloid PET data were
used at a Centiloid threshold.?® Centiloids are a method
used to consolidate PET data from multiple radiotracers, in
this case, AV45 and '®F-Florbetapen Amyloid PET tracer,
and to mitigate inter-site variability.?! Participants were ex-
cluded if the values fell within 5% of these defined boundaries
in order to mitigate noise due to easily misclassified borderline
cases, as has been employed in previous studies**>* (a total of
103 subjects in the total ADNI cohort). CSF concentrations of
phosphorylated tau (pTau) were explored in multivariate lon-
gitudinal modelling of biomarker trajectories.

T,-weighted structural MRI data for participants in phases
ADNIGO, two and three (as these data were collected at
3 T) were downloaded from adni.loni.usc.edu. Clinical in-
formation, cognitive test scores and biomarker data were ex-
tracted from the ‘ADNIMERGE’ datasheet, downloaded
25 March 2022. Gradwarp, Bl-inhomogeneity corrected
and N3 bias field corrected images were converted to Brain
Imaging Data Structure (BIDS) format using the Clinica
‘ADNI-to-BIDS’ pipeline.*’

Left and right hippocampi were segmented in native space
using the Ti-only routine of Automatic Segmentation of
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Hippocampal Subfields, using UPENN-PMC atlas dated
20 July 2018.%° Masks were visually inspected for quality,
and excluded if the hippocampal ROI overlapped with sur-
rounding CSF or non-hippocampal structures, or missed
parts of the hippocampus. This atlas separately segments
anterior and posterior hippocampal subregions, which
for this study were combined to create a whole hippocam-
pus ROI which was used to mask the T1w scans (using
fslmaths).>”

The MRI intensities within the extracted ROIs
were denoised using Advanced Normalization Tools
Denoiselmage (which did not significantly affect the char-
acterization of texture features).”® Extreme high and low
values were then excluded from denoised ROIs using the
p+ 30 technique described by Collewet et al.>® This was
done to limit the effects of partial voluming from sur-
rounding CSF or other tissues. Finally, ROIs were z-scored
to normalize intensity across participants, as recom-
mended by Um et al.>°

Texture analysis was conducted using the Radiomics Image
Analysis R package.®! First-order statistics, 3D grey-level
co-occurrence matrices and grey-level run-length matrices
were computed for the left and right hippocampus. In brief,
each element is described as follows. First-order statistics
describe the shape of the histogram of signal across the re-
gion and includes measures such as skew, kurtosis, energy
and entropy. The grey-level co-occurrence matrices assess
the spatial relationship between pairs of voxels to measure
how often certain values appear adjacently (at a distance of
one voxel) in each direction (all 26 directions were assessed
and averaged). The grey-level run-length matrices assess
how many same-value voxels appear adjacent to each
other, that is, it is sensitive to runs of the same intensity.
For grey-level co-occurrence matrices and grey-level run-
length matrices, images intensities were discretized into
32 equal-sized bins. A total of 293 features, as well as vol-
ume, were computed. A full description of each of these
features is provided by Kolossvary et al.>! Texture features
(and volume) were averaged between hemispheres for all
analyses.

Different texture analysis procedures and pre-processing
pipelines can make a considerable difference to texture fea-
tures and there is little consensus on best practices. Where
possible, we have followed guidelines in the literature and at-
tempted to clearly state our analysis decisions to improve
replicability of our findings.>*=>*

We used principal component analysis as a feature reduction
technique to broadly define texture. Extreme outliers
(mean + 3 X interquartile range) were excluded from texture
variables (0.7% of all data points). Twenty-five variables
with very low variance (<1e—10) were also excluded.

BRAIN COMMUNICATIONS 2023: Page 50f 17 | 5

Variables were z-scored before calculating the principal com-
ponent analysis. The principal component analysis rotation
was calculated only on baseline data from CU participants
with complete texture data and then applied to the entire da-
taset. We aimed to study all components that described >5%
of the variance across CU participants.

Linear mixed-effects models were used to assess the relation-
ship between diagnostic group at baseline and hippocampal
texture and volume in order to determine at which disease
stage each measure is detectibly different to the healthy state:

Texture or Volume ~ Dx_bl + Age_bl + Sex
+ Education +ICV + (1|Site). (1)

One model was run for each texture component or volume as
the dependent variable. Four baseline diagnostic groups
(Dx_bl, a categorical variable) were assessed, defined by a
combination of clinical diagnosis and amyloid status:
CU-AB~, CU-AB*, MCI-AB* and ADD-AB*. Models were
corrected for baseline age (Age_bl), sex, years of education,
intracranial volume and scan site. Three pairwise post hoc
models for each of the six variables were also made compar-
ing the Healthy group to each other group. P-values shown
for this analysis are adjusted for multiple comparisons across
all 18 tests using Benjamini—-Holm method of false discovery
correction. Cohen’s f and d effect sizes were computed.
Outliers, defined as mean + 1.5 X interquartile range, were
excluded from these analyses.

Longitudinal change in brain structure can be assessed be-
tween groups across various scales including age, time since
baseline, or even cognitive impairment; however, it is diffi-
cult to define age at disease onset for subjects in the ADNI
database. This is necessary to be able to merge CU, MCI
and Alzheimer’s disease subjects together on a common time-
line to see how texture features change with disease progres-
sion. To assess longitudinal texture change across the
Alzheimer’s disease continuum, we used a novel approach
to estimate a ‘disease time’ along which participant time-
points could be staged. This method is based on an approach
described and validated by Kiihnel et al.,>* and Raket,*®
available in the progmod R package (github.com/larslau/
progmod). The method shares the basic assumption of a
single disease trajectory along a latent disease time scale
with related methods such as the GRowth models by
Alternating Conditional Expectation and Latent-Time
Joint Mixed-effects Models. Compared with these methods,
our method differs by using data on its original scale and es-
timating different variance parameters for different out-
comes by maximum likelihood estimation, enabling a
data-driven relative weighting of different outcome mea-
sures. Furthermore, the methods differ in terms of the par-
ametrization of the mean trajectories and patient-level
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deviations; of note is that our method does not allow patient-
level random slopes to model deviations from the mean.
These choices have previously been shown to give better per-
formance for predicting future trajectories of patients on the
Alzheimer’s disease continuum compared with GRowth
models by Alternating Conditional Expectation and
Latent-Time Joint Mixed-effects Models.

Estimating a latent disease timeline. Here, we simultan-
eously model the multivariate trajectory of the amyloid cen-
tiloid score (PET) and three cognitive test scores: Alzheimer’s
Disease Assessment Scale (13-item version; ADAS13),
CDR-SB and MMSE to place each subject on a common
time scale.

Disease progression was modelled with a nonlinear
mixed-effects model that jointly described the trajectories
of the outcome measures (ADAS13, CDR-SB, MMSE and
amyloid PET centiloid) along the disease course. Based on
longitudinal observations, subject samples were aligned to
these mean trajectories by including latent-time variables
that described the subject-level shifts in disease progression.

Let y;;, denote subject i ’s observation of the k th outcome
measure at timepoint j (¢; years after the baseline visit). The
mean trajectory 6, of each outcome over the disease con-
tinuum was estimated from the model

Yiike = Or(Eij + Stixed(i) + Si) + Xie + ks (2)

where we will refer to the time argument #;; + Sgeq() + i that
is shared across outcome measures as disease time.

The fixed effects of the model are 6), and sgyeq(;), while s;
and x;;, are subject-level random effects and e;;. describes
the residual variation. The latter three terms are assumed
to be normally distributed. The parameters were modelled
as follows:
® 0p: natural cubic spline with 9 degrees of freedom (DoF).
® Stived(: fixed effect time-shift describing the average shift

in disease time subject i’s baseline diagnostic group (i.e.

CU-AB™, CU-AB*, MCI-AB* and ADD-AB*) and baseline

age.

e s;: random effect time-shift describing the time deviation
of subject i relative to their baseline group and age.

® x;.: random effect intercept describing subject #’s consist-
ent deviation in outcome measure k, an unstructured co-
variance matrix was used to model the correlation
across outcomes.

* ¢;;: independent identically distributed Gaussian noise

with separate variance parameters for each outcome k.

Predicted disease time Z;; = t;; + Sfixed(;) + $i for subject i was
computed by inserting the maximum likelihood estimate of
the baseline status fixed effect for subject $p arus(y) and the
maximum a posteriori prediction of the random shift §; un-
der the maximum likelihood estimates.

Time 0 on the estimated disease continuum was shifted to
represent the time at which amyloid pathology exceeds nor-
mal bounds. Within the context of the model, it was defined

A. Wearn et al.

as the time at which median CSF AB;_4, exceeded the 95th
percentile of the Healthy (AB™) group.

Predicting trajectories across ‘estimated disease time’.
The estimated disease times for each subject were used to
compare trajectories of hippocampal volume and the five
texture principal components (PCs). Values of these outcome
variables vj; for subject 7 at predicted disease time #; were
modelled by the following random-effects model

vij = 0(t;) + x; + &, (3)

where 0 is a natural cubic spline, x; is a subject-level random
intercept that is assumed to be zero-mean normal distributed
with variance 7? and ¢; is the zero-mean normally distributed
residual error with variance . These models were fitted
with between 3 and 6 DoF splines, and the best-fitting model
for each outcome variable was selected using Bayesian
Information Criterion (BIC) with maximum likelihood esti-
mation. The selected model was re-fitted using restricted
maximum likelihood estimation.

Individual trajectories are shown relative to the Healthy
group, by normalizing trajectories against the CU-AB™ group
median and range. Let go.5 and go.05 denote respectively the
median and 95% quantiles (in direction of abnormality) of
outcome values observed in patients that were classified as
CU-AB™ at baseline. Outcome variable abnormality at dis-
ease time ¢ relative to this group was computed as

[/ PI) )
q0.95 — 4905

where 6 denotes the restricted maximum likelihood estimate
of 0. This scale shows the magnitude of variable change over
time, but it does not provide information on the measure-
ment error at any given time, in other words, how sensitive
that variable is to measuring change in a given individual.
Sensitivity to change of each outcome variable was com-
puted from the linear mixed-effects model as the derivative
of the estimated trajectory divided by the standard error of
the residuals (having removed subject-level intercepts)

d -
o, (5)

Q| =

Trajectories for variables along these scales were predicted
for the entire continuum of disease times, excluding extreme
5% quantiles in order to minimize spurious effects from
areas with few data points on which to calculate the
trajectory.

Predicting trajectories across age and disease time sim-
ultaneously. The single-timescale models described in the
previous section do not fully disentangle the effect of increas-
ing age and estimated disease time. In order to directly ex-
plore the effect of age on hippocampal texture and volume,
we used dual-timescale models (described by Raket et al.?”)
where we simultaneously modelled outcomes as a function
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of both progressive age and the estimated disease time calcu-
lated previously.

For each of the six outcome variables (five texture compo-
nents and hippocampal volume), five models for describing
the relation to disease progression and age were considered,
and the best was selected using BIC. In the models below, the
notation for spline functions, random effect intercepts and
residual errors are the same as in the previous sections.

The five models are all of the form

vij = Oty ai) + xi + &,

where 0 describe the trajectory as a function of predicted dis-
ease time 7; and age a;;, x; is a subject-level random intercept
modelled as a zero-mean normal distribution and ¢; de-
scribes the independent normal residual error. The five mod-
els differ in their choice of trajectory 6 :

No effect of disease progression orage: (%, a;) =k (6)

Only effect of disease progression: (%, a;;) = 04(%;)  (7)

Only effect of progressive age:  0(%jj, a;;) = 0a(a;)  (8)
Additive effect of disease progression and age:

O(tij, a;j) = 0d(t;j) + Oa(aso)

Interaction effect of disease progression and age:
0(%;, aij) = 04 int(Z;)0, int(ayw) + O4(Zij) + Oalai).  (10)

To avoid capturing progressive time twice, age at predicted
disease Time 0 (a,0(3) is used in models where both time
scales are present, while progressive age (a;) is used when
age is the sole predictor. For each of these models,
Schwartz BIC was used to select the most parsimonious mod-
el with between 1 and 6 DoF on each spline term.

In order to investigate if hippocampal texture provides add-
itional useful information on top of that provided by volume
to predict cognitive decline, we compared the variance ex-
plained by three sets of three linear regression models predict-
ing future cognitive ability (over 2 years) in people without a
diagnosis of dementia at baseline (CU and MCI groups).

CogScore ~ CogScore_bl + Age_bl + Sex + Education
+1ICV (11)
CogScore ~ CogScore_bl + Age_bl + Sex + Education
+ICV +HV (12)
CogScore ~ CogScore_bl + Age bl + Sex + Education
+ICV +HV + Tx PC1 + Tx PC2 + Tx PC3
+ Tx PC4 + Tx PCS,
(13)

where CogScore is ADAS13, CDR-SB or MMSE and HV is
hippocampal volume. Models were bootstrapped with
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1000 repetitions in order to calculate confidence intervals
and perform statistical comparison between models, using
two-sample t-tests, adjusting for multiple comparisons
across the nine models (three scores X three models) using
the Bonferroni-Holm method (rstatix R package). These
models were bootstrapped and adjusted R* (Rid].) values

were compared across models using two-sample t-tests.
Critically, Rid]- (as opposed to R?) accounts for the varying

DoF between models and penalizes models with a greater
number of variables. All statistical tests were two-tailed,
and an alpha of 0.05 was used to indicate statistical signifi-
cance. All analyses were performed, and plots created in R
v4.1.1.

Results

To address our study aims, we leveraged both cross-sectional
and longitudinal analysis techniques using data collected as
part of the ADNI project. To determine whether hippocam-
pal texture is sensitive to the earliest pathological changes in
Alzheimer’s disease, we ran linear mixed-effects models on
baseline data. Using these models, we determined whether
any detectible differences existed in volume or texture across
disease stages, including between CU people with and with-
out evidence of amyloid pathology, one of the first known
detectible changes in Alzheimer’s disease. To assess texture
change across the Alzheimer’s disease continuum, we used
a multivariate spline-based mixed-effects model to estimate
a ‘predicted disease time’ for all participant timepoints based
on amyloid PET and cognitive scores. Predicted disease times
were used as a scale on which to compare trajectories of vari-
ous biomarkers, including volume and texture of the
hippocampus.

Five principal components of texture explained >5 % of the
variance across CU participants, respectively describing
43,19,14, 7, 5% of the variance in CU-AB™ hippocampal
texture (total: 88%). Probability density functions in
Fig. 2A show the distribution shapes of each of these
components across diagnostic groups before correcting for
covariates such as age, sex and education. Correlations
with variables of interest and visual appearance of each com-
ponent are shown in Fig. 2B and C, respectively. Top vari-
able loadings on each PC are shown in Fig. 2D, with full
variable loadings shown in Supplementary Fig. 1 and
Supplementary Table 1.

We observed significant differences in certain texture compo-
nents (Tx PC) between diagnostic groups (Fig. 3). Early in
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Figure 2 Description of texture components. (A) Probability density functions to show spread of each texture component, and volume, in
each of the three clinical diagnostic groups. This figure shows all participants for whom texture analysis was run, including those without amyloid
status data—the CU group is therefore not split into amyloid positivity subgroups. Units for volume are shown here in cm®. (B) Spearman partial
correlation plot of the relationship between each texture component and volume, other variables of interest; Spearman partial r-values are shown
for each comparison, with stars indicating significance levels: *P < 0.05, **P < 0.001, ***P < 0.0001. Partial correlations control for age, education,
sex and intracranial volume. Change-over-time variables (A) are calculated as difference scores over 2 years. (C) Examples of hippocampi with
extreme high/low values for each texture component. Each image shows a coronal view of left hippocampal ROI from an amyloid-negative CU
participant. Some differences in intensity or clustering are evident, but overall, systematic differences between components are unclear upon visual
inspection alone. More examples are shown in Supplementary Fig. 2. (D) Loading of top 20 texture variables onto each PC. Absolute values are
shown on the x-axes, with direction of loading indicated by colour (red: positive, blue: negative). Variable names are prefixed with either ‘fo’
(first-order statistics), ‘glcm’ or ‘glrlm’. A full list of loadings is available in Supplementary Fig. | and Supplementary Table |. ADASI3, Alzheimer’s
Disease Assessment Scale (13 questions); ADD, Alzheimer’s disease dementia; CDR-SB, Clinical Dementia Rating scale Sum of Boxes; CU,
cognitively unimpaired; HV, hippocampal volume; MCI, mild cognitive impairment; MMSE, Mini Mental State Examination; PC, principal
component.
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Figure 3 Group differences in hippocampal texture and volume at baseline. Top: summary statistics from linear mixed-effects model
showing the strength of the association between each predictor/covariate and each texture component/volume. The size of circles represents the

F-statistic of each predictor, while the shade represents the false discovery rate-adjusted P-value. Non-significant effects are shown in grey. An
overall effect of group was seen in all variables except Tx PC3, with the strongest effects seen for volume, Tx PC5 and Tx PC4. Strong effects of age
were also evident for each variable though this effect was considerably weaker for Tx PC3. P-values were false discovery rate-adjusted across all
tests for multiple comparisons. Bottom: groupwise raincloud plots showing data for each texture component and volume. P-values shown are that
of the main effect of group in pairwise models. Non-significant effects are shown with grey brackets. Tx PC4 was the only variable where a

difference between CU-AB™ and CU-AB" groups is seen. The P-values shown are adjusted for false discovery rate correction. ADD, Alzheimer’s

disease dementia; CU, cognitively unimpaired; ICV, intracranial volume; MCI, mild cognitive impairment; PC, principal component

the Alzheimer’s disease continuum, differences in texture
component 4 (Tx PC4) were observed between the CU-AB~
and CU-AB"* groups. Differences in Tx PC1, Tx PC5 and hip-
pocampal volume were detectible at the stage of MCI.
Differences in Tx PC2 were detected in people with demen-
tia. Tx PC3 was not significantly different from the
Healthy group at any stage. Statistics for these tests are pre-
sented below.

Linear mixed-effects models on hippocampal texture
at baseline revealed significant differences between diag-
nostic groups in Tx PC1 [F(3,1100)=14.8, f=0.20,

P,4; < 0.0001], Tx PC2 [F(3,1055)=7.04, f=0.14, P,4; <
0.001], Tx PC4 [F(3,1077) = 39.0, f=0.33, P,q; < 0.0001],
Tx PC5 [F(3,1032) = 60.0, f=0.42, P,4; < 0.0001] and vol-
ume [F(3,1107) = 80.8, f=0.47, P,g < 0.0001], but not Tx
PC3[F(3,1050)=0.973,f=0.05, P,4; = 0.467]. We also ob-
served consistent effects of age across all texture components
and volume (F’s = 6.24-103, P’s < 0.020).

In order to explore when texture changes occurred in the
disease course, we compared the CU-AB™ group to every
other group by re-running models (1) with only two groups
at a time.
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We observed a significant difference between CU-AB™ and
CU-AB" groups only for Tx PC4 [F(1,564)=7.21, d=0.23,
P,4;=0.014].

We found a significant difference between CU-AB~ and
MCI-AB* groups in Tx PC1 [F(1,710)=21.2, d=0.35,
Pag; <0.0001], Tx PC4 [F(1,695)=39.0, d =0.47, Pog <
0.0001], Tx PCS [F(1,685) =47.4, d = 0.53, P,g < 0.0001]
and volume [F(1,715)=49.9, d = 0.53, P,g; < 0.0001].

Finally, differences between the CU-AB~ and ADD-AB*
groups were observed for Tx PC1 [F(1,564)=37.2,
d =0.51, P,g;<0.0001], Tx PC2 [F(1,492)=11.2, d=0.30,
Pogi=0.002], Tx PC4 [F(1,547)=111, d=0.90, P.g<

AB (Centiloid)

Baseline Diagnostic Group
- CU-AB-
CU-AB+
MCI-AB+
ADD-AB+

Score

-10 0 10 20

A. Wearn et al.

0.0001], Tx PCS5 [F(1,519) =142, d=1.05, P,g;<0.0001]
and volume [F(1,565) =210, d =1.22, P,4; < 0.0001].

No significant pairwise group differences were found
for Tx PC3. Comparisons between all other groups are
shown in supplemental information (Supplementary Fig. 3;
Supplementary Table 2).

To assess texture change across the Alzheimer’s disease con-
tinuum, we used the previously described multivariate dis-
ease progression model to estimate a latent ‘disease time’
variable for all participant timepoints. The model was
trained on a total of 6465 sessions of data over 1416 partici-
pants. Of these, 441 were in the CU-AB™ group, 231 CU-AB*,
480 MCI-AB* and 264 ADD-AB*. Overall, disease time was

ADAS13

-10 0 10 20

Estimated Disease Time (Years)

Figure 4 Trajectories of staging variables for longitudinal modelling in the present sample. The x-axis shows the estimated disease
time, upon which all variables can be staged. Disease onset occurs at Time 0. Each individual used for staging with multiple timepoints is shown as a
coloured line. The estimated mean trajectory is modelled for each variable and displayed on top (white line). ADASI 3, Alzheimer’s Disease
Assessment Scale (I3 questions); ADD, Alzheimer’s disease dementia; CDR-SB, Clinical Dementia Rating scale Sum of Boxes; CU, cognitively
unimpaired; MCI, mild cognitive impairment; MMSE, Mini Mental State Examination.
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Figure 5 Estimated trajectories of disease marker variables. Top: individual participant trajectories for each hippocampal texture
component and volume, with overlaid spline curves. Bottom: spline curves across the calculated disease continuum for each hippocampal texture
component (red hues), hippocampal volume (purple) and other variables, including CDR-SB. CSF amyloid and CSF pTau (grey hues). Left plot
shows splines normalized relative to the Healthy group. Dashed lines represent levels of no abnormality (Healthy group median) and 95%
abnormality (95th percentile of Healthy group). Texture PC4 appeared to change earlier than other texture components, with the greatest overall
texture change seen in PC5. After Time 0, volume remained more abnormal than all texture components, relative to the CU-AB™ group. Right plot
shows each variable’s sensitivity to change at the participant level. Sensitivity to change of each biomarker was computed from the linear
mixed-effects model as the derivative of the estimated biomarker trajectory divided by the residual standard deviation texture components retain
relatively low sensitivity to change across the disease course, except texture PC5 which does increase at later stages, though not above the level of
hippocampal volume. ADD, Alzheimer’s disease dementia; CDR-SB, Clinical Dementia Rating scale Sum of Boxes; CU, cognitively unimpaired;

MCI, mild cognitive impairment; PC, principal component; Tx, texture.

estimated for a total of 9068 timepoints. After fitting, the
data spanned an estimated disease course of 236 months
(19.7 years). Figure 4 shows the predicted staging of indivi-
duals across the four variables used for staging.

The estimated disease time calculated above (2) was used as a
continuous scale on which to stage other variables (3). After
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exclusion of 5% extreme quantiles, these trajectories were cal-
culated using 8164 timepoints over a subset of 1403 partici-
pants of the 1416 participants used above. Longitudinal
spline trajectories of all five PC texture components were best
fitted by 3 DoF models (as defined by BIC), while the trajectory
of hippocampal volume was best fitted by a 5 DoF model.

Figure 5 shows trajectories, relative to the CU-AB™ group,
of hippocampal texture and volume alongside CSF biomark-
er trajectories (AP and pTau) as well as a representative cog-
nitive trajectory (CDR-SB). Hippocampal volume always
appeared more abnormal than texture relative to the
CU-AB™ group after Time 0.

Plotting sensitivity to change revealed limited sensitivity to
change in texture measures compared with other biomarker
variables. In other words, individual-level change is difficult
to measure accurately, especially at early disease stages, des-
pite evidence for early texture changes on a groupwise basis.
On this plot, we also see that CSF AB was the most sensitive
marker of change at early stages of disease. At around 3 years,
CSF pTau and hippocampal volume increase in their sensitiv-
ity, with volume appearing more sensitive than any other
measure. After ~8 years, cognition (CDR-SB) becomes the
most sensitive marker to change and remains so for the re-
mainder of the disease course.

Tx PCA1

-10

-15

-20

Tx PC2

A. Wearn et al.

Variable trajectories were plotted across a total 184-month
(15.3-years, from —2 to 13.3 years) time period. We avoided
estimating trajectories at the very earliest timepoints as more
than 2 years before Time 0, staging accuracy may be lower
as the variability in the four staging variables (amyloid,
ADAS, CDR-SB and MMSE) is more likely due to other fac-
tors than disease severity, such as noise.

To assess how texture changes with age, and how that inter-
acts with change due to disease, we tested whether dual-
timescale models incorporating both age and predicted dis-
ease time [as either additive (equation 9) or interaction
(equation 10) terms] would have better fit than single-
timescale models (equations 7 and 8) or a null model (equa-
tion 6). Texture component trajectories were all best ex-
plained by an additive model of age and disease time (as
determined by BIC). That is, texture changes independently
along both scales. Age effects were best fit with a single
DoF, indicating approximately linear change with age
(Fig. 6). The disease time term for Tx PC1, Tx PC2, Tx
PC4 and volume was best fitted as a spline with 2 DoF,
whereas those for Tx PC3 and Tx PC5 were best fitted
with a 3 DoF spline model.

Tx PC3

o 60 70 80 90 60 70 80 90
©
> Tx PC5 Volume
0
8 3500
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4 3000
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0 2500
60 70 80 90 60 70 80 90 60 70 80 90
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Figure 6 Interactions between age and longitudinal change in hippocampal texture and volume. Texture change was best described
by additive models of disease time and age, indicating independent effects of both for all components. Volume change was best described by an
interaction term between disease time and age, indicating faster atrophy in people who have later-onset disease. The black dotted line represents
the age trajectory before onset of Alzheimer’s disease pathology (Time 0) and is therefore analogous to a ‘healthy ageing’ trajectory. Each blue
curve represents a |5-year pathological trajectory for people with different age of disease onset. PC, principal component; Tx, texture.
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Figure 7 Variance explained (Rgdi) for linear models predicting cognitive decline. Cognitive decline models predict cognitive scores (A:
ADAS-13, B: CDR-SB, C: MMSE) 24 months after baseline of people without a diagnosis of dementia at baseline, with baseline cognitive score,
baseline age, years of education, sex and intracranial volume as predictors. Adding volume to these models (orange/middle) significantly increased

2
R,

Adding texture (purple/right) significantly increased dei even further in all cases. Comparisons are made using 1000-bootstraped resamples of

the data. Adjusted P-values, corrected across all tests, are shown. ****P,,; < 0.0001. ADASI3, Alzheimer’s Disease Assessment Scale (I3
questions); CDR-SB, Clinical Dementia Rating scale Sum of Boxes; MMSE, Mini Mental State Examination.

Volume was the best fit by a model with an interaction term
for age and disease time (BIC =54 801). That is, the disease
trajectory differed depending on the age of disease onset.
The model suggested that volume change due to disease was
faster for people with a later disease onset, and slower for
those whose disease started earlier in life. Figure 6 shows
the trajectories of each texture variable and volume.

In order to investigate if hippocampal texture provided add-
itional useful information on top of that provided by volume
alone, we ran three linear models [equations (11)—(13)] pre-
dicting cognitive decline over a 2-year period in CU and
MCI groups (i.e. those without a diagnosis of dementia at
baseline): using only covariates (baseline cognition, baseline
age, sex, years of education, and intracranial volume), with
hippocampal volume, and with the subsequent addition of
all texture features (Fig. 7). Adding hippocampal volume to
the model significantly increased R? 4 in predicting cognitive
decline of all three cognitive tests [ADAS13: #1998) =8.12,
d=0.36, P,4;<0.0001; CDR-SB: #(1998)=9.43, d = 0.42,
P,4;<0.0001; MMSE: #1994)=6.13, d=0.27, P.,4<
0.0001]. The subsequent addition of texture to the models fur-
ther increased Rﬁdi in all cases [ADAS13: #1986)=14.1,d =
0.63, P,g4; < 0.0001; CDR-SB: #(1993) =7.49, d =0.34, P,
<0.0001; MMSE: £(1999)=7.05, d =0.32, P,4; < 0.0001].

Discussion

In this article, we quantified and examined hippocampal tex-
ture, a potential proxy for microstructural pathological

change, across the Alzheimer’s disease continuum. We iden-
tified a significant difference in a single component of texture
at the earliest stage of Alzheimer’s disease, between CU older
adults with and without evidence of AP pathology.
Differences in additional components of texture, and hippo-
campal volume, emerged later in the disease continuum
along with the onset of cognitive impairment. Using a longi-
tudinal modelling framework, we also show that while most
elements of texture changed significantly over the course of
the disease, these measures had low sensitivity for tracking
individual textural change over time. Critically however,
we show that texture provided additional information than
was provided by volume alone, to more accurately predict
future cognitive change.

Our cross-sectional analyses revealed a temporal ordering in
which markers of brain structure become abnormal relative
to healthy ageing. Texture PC4 was different at the CU-AB*
stage of Alzheimer’s disease—that is, CU older adults with
amyloid biomarkers. This group is at significantly higher
chance of future progression to Alzheimer’s disease than
the CU-AB~ group.>® This component therefore appears to
be sensitive to the very earliest stages of pathology and
may represent a chance to detect damage to extant tissue in
Alzheimer’s disease before the onset of cognitive impair-
ment. We find that hippocampal volume is only detectibly
different later, after the onset of cognitive impairment.
Volume and other later-changing texture variables most like-
ly reflect significant damage to the hippocampus, given the
temporal colocalization with clinical presentation of cogni-
tive impairment.
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Our results support and build upon previous findings that
a texture analysis approach can distinguish between people
with MCI with and without amyloid biomarkers.'**’
Similarly, past research has shown differences in T, signal
heterogeneity, as opposed to mean signal, across the hippo-
campus in people with MCI compared with healthy older
controls.*® Three of our five texture variables were able to
detect a difference at this stage. However, to our knowledge,
a difference in hippocampal texture in an asymptomatic
group with known biomarkers for Alzheimer’s disease has
not previously been reported. While this effect is relatively
small (d =0.23), our result provides robust evidence of the
ability of texture to detect brain changes at very early stages
of the Alzheimer’s disease continuum.

The question remains as to whether there is any direct
biological analogue of PC4 (or any other component of tex-
ture). The factors that load strongly onto PC4 (e.g. negative
loading of inverse right-polar Gaussian and inverse auto-
correlation grey-level co-occurrence matrix factors) indi-
cate that a ‘high-PC4’ hippocampus possesses a higher
proportion of high-intensity voxels appearing adjacent to
other high-intensity voxels. In other words, these cases dis-
play quantifiable clustering of hyperintense areas. This may
indicate localized increases in CSF due to small amounts
of atrophy or accumulation of paramagnetic materials.
Future studies could characterize how microstructural
changes, for example, neuroinflammation or blood vessel
damage, affect conceptually interpretable changes in tex-
ture features. We have included speculative descriptions
on the meaning of each texture feature in supplemental
information.

An alternative interpretation of our results is that
changes in texture features are driven by more macroscale
changes across the hippocampus, such as different propor-
tions of subfields, which have been shown to degrade at dif-
ferent rates due to Alzheimer’s disease pathology.*! A
mixture of both models may be driving such textural
changes. In support of the model that microstructural
changes drive texture, SNIPE scores are a related measure
that use non-local patch-based methods to segment** and
grade*® hippocampus. SNIPE scores depend on the similar-
ity of patch intensity, contrast, as well as texture. In this ap-
proach, healthy adults and patients with Alzheimer’s
disease can be differentiated using the SNIPE grading
score.*? SNIPE looks at small patches (e.g. 7 x 7 x 7 voxels)
of MR intensities and compares them to a pre-labelled li-
brary of MRIs of participants that are either healthy or pa-
tients with Alzheimer’s disease. The SNIPE score is a
weighted average of the neighbourhood patch similarities
in the training library. The patch-based method means that
changes are more likely to be due to microstructural changes
across a given patch that macroscale changes across the entire
structure. These SNIPE scores can predict which healthy aging
community-dwelling participants will progress to Alzheimer’s
disease over a 12 years of follow-up period"’ and differentiate
patients that have stable MCI from those that will progress to
Alzheimer’s disease.'®!”
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We used a multivariate modelling technique, adapted from
previous work,*>*¢ to determine trajectories of change
across the Alzheimer’s disease continuum. Cognitive tests
provide accurate staging at the later stages of disease but
do a poor job at earlier stages, due to limited variability.
Amyloid PET, one of the earliest indicators of Alzheimer’s
disease pathology detectible in vivo improved staging at
the earliest points in the disease course. Overall, an almost
20-year disease timeline was estimated.

In line with our cross-sectional analyses, change in texture
over the disease course is evident; however, hippocampal
volume appears to change at a faster rate and, ultimately,
to a greater degree than any texture component. Assessing
the sensitivity of each variable to change on an individual le-
vel reveals that long-term texture trajectories are mainly dri-
ven by groupwise differences, and that individual change in
texture is more difficult to measure accurately than volume
change, likely attributable to noise factors across timepoints.
We attempted to reduce this noise by averaging data across
hemispheres; however, this is still an area for future
improvement.

Even so, we demonstrate that texture features improve
prediction of cognitive change in preclinical populations
above and beyond the improvement provided by volume
alone. This supports previous work showing that texture
provides more information than volume in identifying
Alzheimer’s disease,'” and classifying MCI patients who
convert to Alzheimer’s disease from those who remain
stable.”>'®'” We also support a finding that even after decorr-
elating texture and volume, texture was able to significantly
predict cognitive decline in people with MCI over 24 months.’
Our findings validate texture as an important addition to ex-
isting clinical assessments alongside volumetry.

We also show dissociable effects of age and disease time in all
texture components, as well as volume. This supports the use
of texture as a generalizable measure of brain health in aging,
as well as marker of Alzheimer’s disease pathology. Indeed,
our measured texture features are likely sensitive to a myriad
of microstructural changes that can affect T signal, such as
water content, inflammatory markers or demyelination.***
It has been shown to be useful in characterization and detec-
tion of pathology due to: Parkinson’s Disease,*® tumours,’
and epilepsy.*” It is a strength of texture analysis that it is
sensitive to this broad array of changes but given the variety
of factors that can affect T signal, specificity remains a chal-
lenge. Specificity could be provided by distribution patterns
of texture abnormality across the brain, in a similar fashion
to cortical thickness or volume as measures of atrophy that
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are agnostic to underlying causes. Although textural changes
in the context of preclinical Alzheimer’s disease have been
previously shown to be limited to the medial temporal
lobes,” more detailed, targeted analyses remain to be con-
ducted. For example, the utility of texture as a method of as-
sessing structural covariance, and multi-regional patterns of
disease-related changes that covary over time.

With further validation, texture analysis of hippocampal
MRI could be used in conjunction with other measures in ini-
tial screening of clinical trial cohorts for individuals who are
at risk for Alzheimer’s disease, prior to more expensive and
invasive tests that provide higher specificity. Given that
MRI scans are often conducted to assess macrostructural at-
rophy (as measured by volume), or to rule out other causes of
disease symptoms, texture analysis can feasibly be added to
existing clinical pipelines to provide additional information
on microstructural tissue quality.

We have deliberately explored texture on standard 1 mm
isotropic Ty-weighted MRI scans, given their wide clinical
accessibility, in order to maximize the clinical relevance of
our findings. However, a consensus on methodological
approaches and improvements to reduce timepoint-to-
timepoint noise are necessary if texture is to become a
marker of individual change over time. Texture analysis
of other MRI modalities may also hold potential for detect-
ing microstructural abnormalities such as quantitative T
and T,, magnetization transfer or quantitative susceptibil-

ity mapping.

Supplementary material

Supplementary material is available at Brain Communications
online.
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